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ABSTRACT

Voice pathology analysis has been one of the useful tools in the diagnosis of the pathological 
voice, as the method is non-invasive, inexpensive, and can reduce the time required for 
the analysis. This paper investigates feature extraction based on the Dual-Tree Complex 
Wavelet Packet Transform (DT-CWPT) using energy and entropy measures tested 
with two classifiers, k-Nearest Neighbors (k-NN) and Support Vector Machine (SVM). 
Massachusetts Eye and Ear Infirmary (MEEI) voice disorders database and Saarbruecken 
Voice Database (SVD) were used. Five datasets of voice samples were used from these 
databases, including normal and abnormal samples, Cysts, Vocal Nodules, Polyp, and 
Paralysis vocal fold. To the best of the authors’ knowledge, very few studies were done on 
multiclass classifications using specific pathology database. File-based and frame-based 
investigation for two-class and multiclass were considered. In the two-class analysis 
using the DT-CWPT with entropies, the classification accuracy of 100% and 99.94% was 
achieved for MEEI and SVD database respectively. Meanwhile, the classification accuracy 

for multiclass analysis comprised of 99.48% 
for the MEEI database and 99.65% for SVD 
database. The experimental results using 
the proposed features provided promising 
accuracy to detect the presence of diseases 
in vocal fold.

Keywords: Dual-tree complex wavelet packet 
transform, file-based, frame-based, two-class and 

multiclass, voice pathology analysis
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INTRODUCTION

Pathological changes of the larynx are presented by the failure of the vocal fold to move 
continuously and properly, which can affect the voice. Voice changes may include loss 
of power, changes in the pitch, constriction of the voice range (i.e. displacement towards 
lower frequency), the addition of noises, and others (Vikram & Umarani, 2013). The precise 
laryngeal diagnostic methods like endoscopy and laryngoscopy used in clinical practice 
can cause discomfort to the patient, invasive, and expensive. By this reason, detection of 
the disease in its early stage is required. A precise voice signal diagnostic quantitative and 
non-invasive nature allows the identification and monitoring of vocal fold pathology, as 
well as reducing the time and cost required for detection.

Patient voice recording allows researchers to analyse a variety of parameters. The 
acoustics features identify the pathology based on the functioning and condition of various 
speech organs such as fundamental frequency, jitter, shimmer, harmonic to noise ratio, and 
intensity (Teixeira et al., 2013). A long duration of the signal is needed to extract the features 
in the time domain, which is tough to get from affected patients. For this reason, researchers 
start to explore the frequency domain analysis, which requires less data that offers more 
information. Mel Frequency Cepstral Coefficients (MFCC) has been reported as a very 
successful parameter for pathological voice detection (Srinivasan et al., 2014). Although 
MFCC is renowned and widely used, some limitations exist, such as low robustness to 
noisy signals (Harar et al., 2018). Mekyska et al. (2015), who studied the parameterisation 
techniques based on segmental features, such as MFCC and Linear Predictive Coding 
(LPC), provided the best classification results of 82.1%–100%. These techniques were, 
however, usually challenging to be clarified clinically. Among the limitations raised were 
identification of particular voice diseases and detection in its first stage or evaluation of 
its progress. 

In recent times, enormous interest has emerged in wavelets approaches for pathological 
voice detection. Wavelet Packet Transform (WPT) was found to be an excellent tool for 
the analysis of non-stationary signals both in time and frequency scale (Hariharan et 
al., 2014). Decomposing a signal into wavelets rather than frequencies can give a much 
better resolution in the domain it is transformed into. Although a great deal of literature 
exists concerning voice pathology analysis, only a handful of them had employed time-
frequency analysis for the investigation of pathology detections. This study focuses on 
investigating the use of DT-CWPT for voice pathology analysis. DT-CWPT produces 
complex coefficients using a dual-tree of wavelet filters to obtain real and imaginary 
coefficients. This would be useful as an effort to identify new features that can contribute 
to the overall best performance to detect the specific pathology.  
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Related Works

Voice pathology analysis focuses on employing signal processing techniques and machine 
learning algorithms to form a system capable of precise and accurate detection. Wavelet 
decomposition for feature extraction has been one of the great approaches in this field. 
Most works were done using file-based analysis, where the whole audio file is considered 
as the input signal to further classified as normal or pathological. Very few studies have 
been carried out as frame-based (Godino-llorente et al., 2005; Hariharan et al., 2014). 
Hariharan et al. (2014) proposed a new feature vector based on the WPT and singular value 
decomposition using four differently supervised classifiers, such as k-NN, least-square 
SVM, probabilistic neural network, and general regression neural network. In their paper, 
100% classification accuracy was attained using the proposed features and classifiers for 
normal and abnormal vocal fold detection in both MEEI and MAPACI speech pathology 
database. Akbari and Arjmandi (2014) explored the possibility of applying the Discrete 
Wavelet Packet Transform (DWPT) to categorise 258 voiced samples, randomly selected 
from three pathologic classes and one normal class in MEEI database. The disordered 
voice samples comprised hyperfunction, gastric reflux, and A–P squeezing. Feature 
vectors optimised using Multiclass Linear Discriminant Analysis showed an average 
performance of 96.67% and 97.33% for Energy and entropy features, respectively classified 
by Multilayer Neural Network. Saidi and Almasganj (2015) obtained a good classification 
rate of 99.3% for normal and abnormal cases classified by SVM using extracted features 
from a five-band wavelet system. Features were extracted from a total of 57 normal and 
653 pathological voice signals in the MEEI database containing sustained vowel /ah/ and 
speech sample pronounced the “Rainbow passage”. Majidnezhad (2015) explored an initial 
feature vector based on the combination of the Wavelet Packet Decomposition (WPD) 
and the MFCC using a hybrid of the Artificial Neural Network (ANN) as the classifier, 
which gave 94.24% accuracy on the MEEI database and 95.3% accuracy on the Russian 
database (RusDS). 

While most of the current work focuses on distinguishing normal (healthy) and 
abnormal (pathological) voices using various parameters, very little research on the 
multiclass classification system of different types of pathologies have been conducted. A 
study by Muhammad et al. (2017) on multiclass experimental results indicated that the 
Interlaced Derivative Pattern (IDP) based features using SVM gave greater accuracy than 
those using conventional MFCC and Multi-Dimensional Voice Program parameters in 
three different databases, which are the MEEI, SVD, and Arabic Voice Pathology Database 
(AVPD). The proposed IDP based features using SVM achieved 99.38% (MEEI), 93.2% 
(SVD), and 91.5% (AVPD) average accuracies for two-class classification. However, it is a 
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challenging task to compare between published papers, since their findings varied because 
of the differences in the chosen voice pathology samples from different databases, acoustic 
features implemented, and classifiers employed in the researches. 

DT-CWPT introduced by Bayram and Selesnick (2008) had several properties such as 
the introduction of limited redundancy, reduced aliasing, and nearly shift-invariance, which 
were lacking in conventional WPT. Recently, the successful application of DT-CWPT in 
various fields such as mechanical fault diagnosis (Qu et al., 2016; Cao et al., 2019; Haidong 
et al., 2019), infant cry classification (Lim et al., 2018), speaker, and accent recognition 
(Abdullah et al., 2019) has been reported. Since the wavelet packet analysis has a reliable 
capability in identifying vocal fold pathology, this study aimed to investigate the use of 
DT-CWPT for analysing the voice signals using energy and entropy measures. Two-class 
and multiclass experiments were performed using the file-based and frame-based approach. 
Five datasets of voice samples for two-class and multiclass analysis from two databases 
were used for the investigation so that a direct comparison could be made with that of the 
previous studies.

METHODOLOGY

Figure 1 shows the block diagram of the proposed voice pathology analysis in this study.

Figure 1. Block diagram of the proposed voice pathology analysis
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Input Signal Processing

The voice signals from the normal person and patients suffering from disorders were 
acquired from the MEEI and SVD databases. Five datasets of voice samples were used 
from these databases, including normal and abnormal samples, Cysts, Vocal Nodules, Polyp, 
and Paralysis vocal folds. Table 1 shows the number of voice samples used as datasets for 
two-class and multiclass investigations.

Table 1 
Number of samples for two-class and multiclass analysis

The MEEI database, which is the most widely used and the only commercially available 
database, become a benchmark in the field of pathological speech analysis (Harar et al., 
2018). Meanwhile, the SVD database, a freely downloadable database, was recorded 
by the Institute of Phonetics of Saarland University (Barry & Pützer, 2007). Only a few 
studies of voice pathology analysis have been explored in this database (Martinez et al., 
2012; Muhammad et al., 2017). The voice signal files that only contained sustained normal 
pitch vowel /a/ samples were selected. All voice samples were down-sampled to have the 
same sampling frequency of 25 kHz due to the different recording sampling rates stored 
in this database. This rate was exploited because it satisfied the minimum rate specified 
by Nyquist and also the rate was mostly used in other referenced papers (Hariharan et al., 
2014; Muhammad et al., 2017; Harar et al., 2018; Patil, 2019). This sample analysis was 
chosen to present outcomes comparable with previously published works. In the MEEI 
database, only samples of vocal nodules were available, while in SVD, cysts samples were 

Dataset Database Analysis Voice Sample Total 
Samples

1 MEEI Two-class Class 1 Abnormal 173 226
Class 2 Normal 53

2 MEEI Two-class Class 1 Abnormal 106 159

Class 2 Normal 53

3 SVD Two-class Class 1 Abnormal 244 931

Class 2 Normal 687

4 MEEI Multiclass Class 1 Vocal nodules 19 106
Class 2 Paralysis 67
Class 3 Polyp 20

5 SVD Multiclass Class 1 Cysts 6 244
Class 2 Paralysis 194
Class 3 Polyp 44
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provided. Therefore, to investigate the three pathologies and to allow easier comparison 
between the MEEI and SVD databases, class 1 was represented to be either vocal nodules 
or cysts depending on the database employed.

However, unlike the previous works, file-based and frame-based analyses were 
conducted to produce a larger dataset. In the frame-based analysis, voice samples were 
segmented into frames of 40 ms long (as the voice are considered stationary in the period 
of 20–40 ms) using a Hamming window with 50% overlap (Shafik et al., 2009; Hariharan 
et al., 2014). 

Feature Extraction

The DT-CWPT using energy and entropy measures are proposed as the feature extraction. 
It is an extended algorithm from the Dual-Tree Complex Wavelet Transform (DT-CWT), 
with two bands of DWPT operating in parallel (Bayram & Selesnick, 2008). The DT-CWT 
is a form of the discrete wavelet transform, which generates complex coefficients (real 
and imaginary) using a dual-tree of wavelet filters that offer a more productive signal 
analysis. This introduces limited redundancy (2m:1 for m-dimensional signals) and allows 
the transform to provide approximate shift-invariance and directionally selective filters 
(properties lacking in the traditional wavelet transform) while preserving the natural 
properties of perfect reconstruction and computational efficiency with good, well-balanced 
frequency responses (Selesnick et al., 2005). DT-CWPT has the same properties of DT-
CWT i.e shift-invariance and excellent directional selectivity, with the advantage of fewer 
energy leakages into its negative frequency bands (Serbes et al., 2013). 

As shown in Figure 2, each of the sub-bands should be repeatedly decomposed using 
low-pass/high-pass perfect reconstruction (PR) filter banks (FB) to construct DT-CWPT. 
The PR FBs should be chosen so that the response of each branch of the second wavelet 
packet FB is the discrete Hilbert transform of the corresponding branch of the first wavelet 
packet FB; thus, allowing each sub-band of the DT-CWPT to be analytic. The PR FB, which 
is used to decompose the first FB of the DT-CWT, should also be used to decompose the 
second FB to preserve the Hilbert transform relationship already satisfied by those branches. 
The high-pass branch of the first stage, h1

(1)(n)  and h’1
(1)(n), satisfy h’1

(1)(n) = h1
(1)(n-1), which 

is exactly the same relationship satisfied by the low-pass filters of the first stage, h’0
(1)(n) = 

h0
(1)(n-1). The second wavelet packet FB is obtained by replacing the first stage filters hi

(1)

(n)  by hi
(1)(n-1) and by replacing hi

 (n)  by h’i(n) for i ∈{0,1}(Bayram & Selesnick, 2008).     

DT-CWPT utilises dual-tree decomposition; thus, producing complex (real and 
imaginary) coefficients using dual-tree wavelet filters to the full binary tree. For j levels 
of decomposition, the wavelet packets produce 2j different sets of coefficients. At level 5, 
both wavelet packet filters will generate a total of 64 sub-bands (25 × 2). A matrix size of 
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64 × M composed of wavelet packet coefficient (sub-bands × coefficients) obtained, as 
described in Equation 1 below. 

            [1]

To investigate the influence of wavelet levels, experiments using all levels from 1 to 
5 ([21 + 22

 + 23 + 24 + 25] × 2), which produced 124 sub-bands were also conducted. The 
results just give a little difference in ±1%–2% accuracy with a longer computation time, 
so only the fifth level of DT-CWPT was chosen.

The Energy, Shannon and Renyi entropy measures were applied to the decomposed 
fifth level DT-CWPT sub-bands to extract a useful and straightforward feature vector. Those 
non-linear entropies were extracted to evaluate the subtle changes present in analysing 
non-stationary signals like speech signals and various bio-signals (Hariharan et al., 2018). 
The energy (EGY) of each wavelet packet sub-band coefficients was computed using 
Equation 2 below:

Figure 2. First wavelet packet FB of a five-level 
DT-CWPT. Note that the same decomposition 
mechanism also applies to the second wavelet FB. 

      [2]

The Shannon entropy defined by Equation 
3, is an average information content measure 
that has been hidden in a signal. It’s exploited 
to model the unpredictability and irregularities 
of a pathologic speech signal, as well as the 
possibility within a certain wavelet packet 
decomposition sub-band.

       [3]

Renyi entropy is a well-known one-
parameter generalisation of Shannon entropy. 
It is used to estimate the spectral complexity 
of a time series signal given by Equation 4 
where α≠1. 

    [4]

j=1, 2, 3,…j, where j is the number of 
decomposition level and k=1, 2, 3,…N is the 
number of wavelet packet coefficient in the 
respective sub-band.
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The proposed method was then compared to the standard and well-known feature 
extraction methods, i.e. the MFCC and LPC (Alim & Rashid, 2018; Ankışhan, 2018). 
MFCC and LPC methods transform the voice signal from time-based to frequency-based 
domain while the DT-CWPT provides a time-frequency analysis of the voice signals. The 13 
MFCC is chosen due to higher-order coefficients that represent increasing levels of spectral 
details; whereby depending on the sampling rate and estimation method, 12 to 20 cepstral 
coefficients are typically optimal for speech analysis (Huang et al.,2001; Virtanen et al., 
2012). The order of ten for LPC is usually chosen since there is no significant improvement 
in sound quality for orders greater than ten (Ngo & Mehrubeoglu, 2010). 

Classification

Two common classifiers, k-NN and SVM, were used to find the classification rate. The two-
class analysis produced a result of normal or abnormal voice, while the multiclass analysis 
produced results according to the pathological voice. The k-NN classifier was chosen due 
to its simple implementation and flexibility to feature or distance choices (Abdullah et al., 
2019). The classification was based on the majority of the k-Nearest Neighbor’s category. 
In this study, k values were varied between 1 and 10. Instead of modelling the probability 
density of each class, SVM models the boundary between the classes. In biomedical 
applications, it is better to get a false alarm than a false negative, and the SVM seems to 
have better behaviour (Godino-Llorente et al., 2005). The best combination of two SVM 
parameters; cost (c) and gamma (γ) were obtained using LIBSVM Selection Tool (Chang 
& Lin, 2011). SVM was chosen since it has a better generalisation (less overfitting) and 
robust to noise.

In this work, a 10-fold cross-validation classification (CVC) scheme was used to increase 
the reliability of the results. Using this scheme, the extracted features were distributed into 
ten sets randomly, and ten times repetitive training was performed. To evaluate the two-
class classifier performance, measures from the confusion matrix represented in Table 2 
are considered. True positive (TP) measure of the classifier is classified as pathology when 
pathological samples are present, true negative (TN) classified as normal when normal 
samples are present, false positive (FP) classified as pathological when normal samples are 
present, and false negative (FN) classified as normal when pathological samples are present.

System decision Actual diagnosis
Pathological Normal

Pathological True positive (TP) False positive (FP)
Normal False negative (FN) True negative (TN)

Table 2 
Two-class confusion matrix
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The overall accuracy is calculated using the measures in Equation 5.

Accuracy = ((TP+TN)/ (Total Samples)) × 100 %           [5] 

The performance of the multiclass analysis was evaluated by a confusion matrix 
represented in Table 3; where n = number of class. This matrix shows which points are 
correctly classified and which points are incorrectly classified. The number of test instances 
is shown by each matrix element for which the actual class is the row, and the predicted 
class is the column. Large numbers down the diagonal and small values (ideally zero) in 
the rest of the matrix relate to promising results. 

Table 3 
Multiclass confusion matrix

Prediction
Class 1 Class 2 … Class n

A
ct

ua
l

Class 1 Accuracy 1
Class 2 Accuracy 2
… …
Class n Accuracy n

The overall performance of the classifier is calculated as in Equation 6.   

Overall Accuracy =        [6]

RESULT AND DISCUSSION

Overall, in this proposed work, the DT-CWPT based on Energy, Shannon and Renyi entropy, 
tested with k-NN and SVM classifiers yielded promising results. The results achieved better 
accuracy in the framed-based approach for all five datasets of voice samples compared to 
file-based analysis. Table 4 shows the two-class analysis for MEEI database (Dataset 1 and 
Dataset 2) and SVD database (Dataset 3). The proposed method, DT-CWPT with Shannon 
entropy, achieved the accuracy of 99.60% and 99.43% for Dataset 1 and 2 respectively 
while for Dataset 3, 94.60% obtained from DT-CWPT with Renyi entropy. From the 
Table 4, in the file-based approach the results outperformed the other two conventional 
methods (the highest accuracy of MFCC and LPC are 94.04% and 90.01% respectively). 
The frame-based experiment also gave good performance using the proposed method. The 
best performance was 100% accuracy score, achieved for both k-NN and SVM classifier in 
both Dataset 1 and 2, while the Dataset 3, best performance gave about 99.92% for k-NN 
and 99.94% for SVM. 
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Table 5 compares the proposed work with previous related researches for two-class 
analysis. The related works in Table 5 were selected because they used the same database 
and similar classifier as the proposed work. The difference in the feature extraction method 
employed would be an ideal opportunity to compare our results with those present in the 

Table 4 
Two-class analysis for the databases

2 
CLASS

Classifier Feature Extraction 
Method
(no. of Coefficients)

Dataset 1 Dataset 2 Dataset 3

Accuracy 
(%) ± sd

Accuracy
(%) ± sd

Accuracy
(%) ± sd

FILE - 
BASED

KNN DTCWPT
(64)

Energy 
Entropy

88.54 ± 
0.76

89.31 ± 
1.22

81.34 ± 
0.15

Shannon 
Entropy

99.60 ± 
0.14

99.43 ± 
0.20

81.45 ± 
0.35

Renyi 
Entropy

92.83 ± 
0.72

93.33 ± 
0.80

82.41 ± 
0.34

MFCC (13) 82.12 ± 
1.18

81.01 ± 
1.51

84.61 ± 
0.26

LPC (10) 84.16 ± 
0.75

83.08 ± 
1.00

82.07 ± 
0.40

SVM DTCWPT
(64)

Energy 
Entropy

90.27 ± 
0.81

88.93 ± 
0.44

94.40 ± 
0.30

Shannon 
Entropy

99.20 ± 
0.35

99.43 ± 
0.20

90.01 ± 
0.45

Renyi 
Entropy

94.29 ± 
0.64

91.76 ± 
0.46

94.60 ± 
0.29

MFCC (13) 86.19 ± 
0.85

85.28 ± 
1.19

94.04 ± 
0.35

LPC (10) 87.21 ± 
0.82

85.22 ± 
0.68

90.01 ± 
0.46

FRAME 
- 
BASED

KNN DTCWPT
(64)

Energy 
Entropy

100 ± 0.00 100 ± 0.00 99.88 ± 
0.02

Shannon 
Entropy

100 ± 0.00 100 ± 0.00 99.92 ± 
0.02

Renyi 
Entropy

100 ± 0.00 100 ± 0.00 99.88 ± 
0.01

MFCC (13) 100 ± 0.00 100 ± 0.00 99.97 ± 
0.01

LPC (10) 98.11 ± 
0.10

99.53 ± 
0.05

95.18 ± 
0.09
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literature. Moreover, they had also analysed the data using a frame-based and file-based 
analysis, which is similar to the proposed work.

In the frame-based analysis, the proposed method demonstrated improvements in 
performance because more information in time and frequency scale was obtained from 5th 
level proposed complex coefficients (2×25=64) as compared to the 5th level WPT coefficients 

Table 5
Overview of two-class analysis using MEEI subset (53 normal and 173 pathological) 

Table 4 (Continued)

2 
CLASS

Classifier Feature Extraction Method
(no. of Coefficients)

Dataset 1 Dataset 2 Dataset 3

Accuracy 
(%) ± sd

Accuracy
(%) ± sd

Accuracy
(%) ± sd

FRAME 
- 
BASED

SVM DTCWPT
(64)

Energy 
Entropy

99.99 ± 
0.01

100 ± 
0.00

99.94 ± 
0.01

Shannon 
Entropy

99.99 ± 
0.03

99.97 ± 
0.03

99.59 ± 
0.03

Renyi 
Entropy

100 ± 0.01 100 ± 
0.00

99.94 ± 
0.01

MFCC (13) 99.99 ± 
0.01

100 ± 
0.00

99.92 ± 
0.01

LPC (10) 98.51 ± 
0.11

99.73 ± 
0.07

97.23 ± 
0.05

Method Feature Classifier Accuracy (%) ± sd 
File-based Frame-

based
(Godino-Llorente et al., 
2005)

MFCC with noise 
features

SVM 95.00
± 2.00

94.10
± 2.00

(Hariharan et al., 2014) WPT k-NN 99.65
± 0.19

94.05
± 0.83

LS-SVM 99.12
± 0.47

95.25
± 0.12

(Majidnezhad (2015) WPD with MFCC ANN 94.24 -

(Muhammad et al., 2017) IDP SVM 99.38 -
Proposed DT-CWPT k-NN 99.60

± 0.14
100
± 0.00

SVM 99.20
± 0.35

100
± 0.01
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(25=32) proposed by Hariharan et al. (2014), thus generating real and imaginary tree fine 
resolution frequency sub-band data allowing for a better analysis. Moreover, a higher level 
of wavelet packet decomposition leads to better discriminative quality (Akbari & Arjmandi, 
2014). These points contribute to better results performance compared to previous work. 

These two-class accuracy results motivate the investigation of multiclass file-based and 
frame-based experiments for the other multiclass datasets in the databases. The complete 
results for multiclass analysis are shown in Table 6 and Table 7 for Dataset 4 and Dataset 
5, respectively. The performance of the multiclass results was found not consistent. It is 
because of a limited number of pathology available and unevenly distributed number of 
samples from a different set of pathological voice in these databases. These limitations in the 
number and sample differences contribute to the accuracy performance for both databases.

It is known that the classification accuracy of vocal fold pathology detection systems is 
extremely dependent on the dataset and its characteristics, such as the volume of the dataset 
(Majidnezhad, 2015). Therefore, an adaptive synthetic (ADASYN) sampling approach is 
applied to imbalanced experimental datasets, to balance up the minority sample data to 
achieve better accuracy. ADASYN generates a weighted distribution for different minority 
class examples according to their level of difficulty in learning, where more synthetic data 
is produced for minority class examples that are harder to learn compared to those minority 
examples that are easier to learn. As a result, the ADASYN approach improves learning 
to the data distributions in two ways: reducing the bias introduced by the class imbalance, 
and adaptively shifting the classification decision boundary toward the difficult examples 
(He et al., 2008).

The proposed frame-based multiclass analysis using DT-CWPT with entropy and SVM 
yields a better average result ranging from 99.48%–99.65% as compared to 94.09%–98.80% 
obtained from its file-based analysis. However, the research on multiclass pathology 
analysis is lacking. The same database and almost similar datasets used by Muhammad 
et al. (2017) were applied in this work as a fair comparison, except for Class 1, where the 
authors used Cyst pathology for both MEEI and SVD database. The performances of file-
based multiclass analysis of the proposed method are comparable, as indicated in Table 8.

Generally, both two-class and multiclass pathology detection using proposed DT-
CWPT, produced better accuracy in the frame-based compared to the file-based analysis. 
This is because the frame based method framed the signal at 40ms per frame, which gives 
better time resolution analysis. It is known that speech signal exhibit quasi-stationary 
behaviour within the short period of time. In order to reduce feature loss and increase the 
continuity between adjacent frames in the framing, each frame is multiplied by Hamming 
window with 50% overlapped. 

Nonetheless, the drawback of the frame-based analysis is that it takes a longer 
processing time due to more information obtained from all of the frames. The proposed 
feature methods also exhibit a small standard deviation (sd) showing the result ranges 
are more precise and give better performance using frame-based in both two-class and 
multiclass analyses.



DT-CWPT for Voice Pathology Analysis

851Pertanika J. Sci. & Technol. 28 (3): 839 - 858 (2020)

D
at

as
et

 4
(M

EE
I)

C
la

ss
ifi

er
Fe

at
ur

e 
Ex

tra
ct

io
n 

M
et

ho
d

(n
o.

 o
f C

oe
ffi

ci
en

ts
)

Av
er

ag
e 

A
cc

ur
ac

y
(%

) ±
 sd

C
la

ss
 1

 
A

cc
ur

ac
y 

(%
) 

± 
sd

C
la

ss
 2

 A
cc

ur
ac

y 
(%

) ±
 sd

C
la

ss
 3

 A
cc

ur
ac

y 
(%

) ±
 sd

FI
LE

 - 
B

A
SE

D
 

(a
da

sy
n)

K
N

N
D

TC
W

PT
(6

4)
En

er
gy

 
En

tro
py

78
.2

1 
± 

0.
77

95
.9

7 
± 

1.
01

42
.0

9 
± 

1.
97

96
.5

7 
± 

0.
72

Sh
an

no
n 

En
tro

py
71

.4
7 

± 
1.

12
92

.1
9 

± 
1.

80
29

.4
0 

± 
2.

64
94

.0
9 

± 
1.

12

R
en

yi
 E

nt
ro

py
77

.4
4 

± 
1.

18
97

.1
0 

± 
0.

00
39

.1
0 

± 
2.

88
95

.5
2 

± 
2.

63

M
FC

C
 (1

3)
77

.1
5 

± 
0.

58
94

.9
3 

± 
1.

02
44

.9
3 

± 
1.

64
91

.7
2 

± 
1.

96
LP

C
 (1

0)
71

.9
6 

± 
0.

92
94

.0
6 

± 
1.

27
31

.0
4 

± 
2.

52
89

.8
5 

± 
1.

46

SV
M

D
TC

W
PT

(6
4)

En
er

gy
 

En
tro

py
93

.3
8 

± 
0.

91
99

.4
0 

± 
1.

26
90

.3
0 

± 
1.

27
90

.4
5 

± 
2.

01

Sh
an

no
n 

En
tro

py
87

.2
6 

± 
1.

56
86

.0
9 

± 
1.

72
93

.2
8 

± 
1.

27
82

.2
7 

± 
2.

77

R
en

yi
 E

nt
ro

py
94

.0
9 

± 
0.

99
94

.3
5 

± 
1.

99
97

.0
1 

± 
0.

00
90

.9
0 

± 
3.

18
M

FC
C

 (1
3)

90
.7

5 
± 

1.
01

92
.0

3 
± 

1.
23

95
.0

7 
± 

1.
01

84
.8

4 
± 

2.
95

LP
C

 (1
0)

83
.8

2 
± 

1.
33

78
.5

5 
± 

2.
54

95
.6

7 
± 

0.
47

77
.5

0 
± 

2.
20

Ta
bl

e 
6 

Th
re

e 
cl

as
s c

la
ss

ifi
ca

tio
n 

fo
r d

at
as

et
 4



Farah Nazlia Che Kassim, Hariharan Muthusamy, Vikneswaran Vijean, Zulkapli Abdullah and Rokiah Abdullah 

852 Pertanika J. Sci. & Technol. 28 (3): 839 - 858 (2020)

Ta
bl

e 
6 

(C
on

tin
ue

d)

D
at

as
et

 4
(M

EE
I)

C
la

ss
ifi

er
Fe

at
ur

e 
Ex

tra
ct

io
n 

M
et

ho
d

(n
o.

 o
f C

oe
ffi

ci
en

ts
)

Av
er

ag
e 

A
cc

ur
ac

y
(%

) ±
 sd

C
la

ss
 1

 
A

cc
ur

ac
y 

(%
) 

± 
sd

C
la

ss
 2

 A
cc

ur
ac

y 
(%

) ±
 sd

C
la

ss
 3

 A
cc

ur
ac

y 
(%

) ±
 sd

FR
A

M
E 

– 
B

A
SE

D
 

(a
da

sy
n)

K
N

N
D

TC
W

PT
(6

4)
En

er
gy

 
En

tro
py

99
.4

2 
± 

0.
05

98
.5

1 
± 

0.
00

99
.8

0 
± 

0.
13

10
0 

± 
0.

00

Sh
an

no
n 

En
tro

py
99

.3
4 

± 
0.

06
98

.5
1 

± 
0.

00
99

.5
9 

± 
0.

16
10

0 
± 

0.
00

R
en

yi
 E

nt
ro

py
99

.4
3 

± 
0.

06
98

.5
1 

± 
0.

00
99

.9
8 

± 
0.

05
99

.8
5 

± 
0.

19
M

FC
C

 (1
3)

99
.4

2 
± 

0.
02

98
.5

1 
± 

0.
00

99
.8

2 
± 

0.
05

10
0 

± 
0.

00
LP

C
 (1

0)
97

.7
4 

± 
0.

09
98

.6
2 

± 
0.

18
96

.5
8 

± 
0.

29
98

.0
2 

± 
0.

13

SV
M

D
TC

W
PT

(6
4)

En
er

gy
 

En
tro

py
99

.4
4 

± 
0.

07
98

.5
1 

± 
0.

00
10

0 
± 

0.
00

99
.8

7 
± 

0.
21

Sh
an

no
n 

En
tro

py
99

.4
8 

± 
0.

02
98

.5
1 

± 
0.

00
99

.9
8 

± 
0.

05
10

0 
± 

0.
00

R
en

yi
 E

nt
ro

py
99

.4
7 

± 
0.

04
98

.4
7 

± 
0.

10
10

0 
± 

0.
00

10
0 

± 
0.

00
M

FC
C

 (1
3)

99
.4

8 
± 

0.
00

98
.5

1 
± 

0.
00

10
0 

± 
0.

00
10

0 
± 

0.
00

LP
C

 (1
0)

98
.5

3 
± 

0.
12

98
.4

7 
± 

0.
23

99
.1

2 
± 

0.
19

98
.0

2 
± 

0.
20



DT-CWPT for Voice Pathology Analysis

853Pertanika J. Sci. & Technol. 28 (3): 839 - 858 (2020)

Ta
bl

e 
7 

Th
re

e 
cl

as
s c

la
ss

ifi
ca

tio
n 

fo
r d

at
as

et
 5

D
at

as
et

 5
(S

V
D

)
C

la
ss

ifi
er

Fe
at

ur
e 

Ex
tra

ct
io

n 
M

et
ho

d
(n

o.
 o

f C
oe

ffi
ci

en
ts

)
Av

er
ag

e 
A

cc
ur

ac
y

(%
) ±

 sd

C
la

ss
 1

 
A

cc
ur

ac
y

 (%
) ±

 sd

C
la

ss
 2

 
A

cc
ur

ac
y

 (%
) ±

 sd

C
la

ss
 3

 
A

cc
ur

ac
y

 (%
) ±

 sd
FI

LE
 - 

B
A

SE
D

 
(a

da
sy

n)
K

N
N

D
TC

W
PT

(6
4)

En
er

gy
 E

nt
ro

py
83

.5
2 

± 
0.

50
10

0 
± 

0.
00

51
.7

0 
± 

1.
48

98
.0

3 
± 

0.
40

Sh
an

no
n 

En
tro

py
84

.3
4 

± 
0.

30
10

0 
± 

0.
00

53
.8

7 
± 

0.
70

98
.4

2 
± 

0.
39

R
en

yi
 E

nt
ro

py
85

.2
3 

± 
0.

38
10

0 
± 

0.
00

56
.4

4 
± 

1.
12

98
.7

5 
± 

0.
35

M
FC

C
 (1

3)
87

.3
8 

± 
0.

51
10

0 
± 

0.
00

64
.7

4 
± 

1.
38

97
.1

0 
± 

0.
39

LP
C

 (1
0)

85
.3

3 
± 

0.
66

10
0 

± 
0.

00
61

.4
9 

± 
1.

65
94

.9
5 

± 
0.

76

SV
M

D
TC

W
PT

(6
4)

En
er

gy
 E

nt
ro

py
98

.8
0 

± 
0.

26
10

0 
± 

0.
00

96
.8

0 
± 

0.
59

99
.5

6 
± 

0.
43

Sh
an

no
n 

En
tro

py
94

.9
5 

± 
0.

61
10

0 
± 

0.
00

90
.4

1 
± 

0.
81

94
.4

3 
± 

1.
16

R
en

yi
 E

nt
ro

py
98

.3
2 

± 
0.

39
10

0 
± 

0.
00

96
.9

6 
± 

0.
75

98
.0

0 
± 

0.
78

M
FC

C
 (1

3)
96

.7
7 

± 
0.

32
10

0 
± 

0.
00

97
.5

8 
± 

0.
25

92
.8

5 
± 

0.
82

LP
C

 (1
0)

93
.3

6 
± 

0.
41

10
0 

± 
0.

00
90

.0
5 

± 
0.

73
90

.0
0 

± 
1.

60



Farah Nazlia Che Kassim, Hariharan Muthusamy, Vikneswaran Vijean, Zulkapli Abdullah and Rokiah Abdullah 

854 Pertanika J. Sci. & Technol. 28 (3): 839 - 858 (2020)

Ta
bl

e 
6 

(C
on

tin
ue

d)

D
at

as
et

 5
(S

V
D

)
C

la
ss

ifi
er

Fe
at

ur
e 

Ex
tra

ct
io

n 
M

et
ho

d
(n

o.
 o

f C
oe

ffi
ci

en
ts

)
Av

er
ag

e 
A

cc
ur

ac
y

(%
) ±

 sd

C
la

ss
 1

 
A

cc
ur

ac
y

 (%
) ±

 sd

C
la

ss
 2

 
A

cc
ur

ac
y

 (%
) ±

 sd

C
la

ss
 3

 
A

cc
ur

ac
y

 (%
) ±

 sd
FR

A
M

E 
– 

B
A

SE
D

(a
da

sy
n)

K
N

N
D

TC
W

PT
(6

4)
En

er
gy

 E
nt

ro
py

99
.5

9 
± 

0.
01

10
0 

± 
0.

00
98

.7
8 

± 
0.

03
10

0 
± 

0.
00

Sh
an

no
n 

En
tro

py
99

.5
3 

± 
0.

03
10

0 
± 

0.
00

98
.6

2 
± 

0.
06

99
.9

8 
± 

0.
03

R
en

yi
 E

nt
ro

py
99

.5
8 

± 
0.

03
10

0 
± 

0.
00

98
.7

5 
± 

0.
09

10
0 

± 
0.

00
M

FC
C

 (1
3)

99
.6

3 
± 

0.
01

10
0 

± 
0.

00
98

.8
9 

± 
0.

03
10

0 
± 

0.
00

LP
C

 (1
0)

97
.3

9 
± 

0.
08

10
0 

± 
0.

00
94

.0
6 

± 
0.

15
98

.0
8 

± 
0.

14

SV
M

D
TC

W
PT

(6
4)

En
er

gy
 E

nt
ro

py
99

.6
5 

± 
0.

01
10

0 
± 

0.
00

98
.9

7 
± 

0.
00

99
.9

9 
± 

0.
02

Sh
an

no
n 

En
tro

py
99

.6
1 

± 
0.

02
99

.9
8 

± 
0.

03
98

.9
3 

± 
0.

06
99

.9
3 

± 
0.

03

R
en

yi
 E

nt
ro

py
99

.6
5 

± 
0.

01
99

.9
9 

± 
0.

02
98

.9
7 

± 
0.

00
99

.9
9 

± 
0.

02
M

FC
C

 (1
3)

99
.6

4 
± 

0.
00

99
.9

4 
± 

0.
00

98
.9

7 
± 

0.
00

10
0 

± 
0.

00
LP

C
 (1

0)
99

.0
4 

± 
0.

05
99

.9
4 

± 
0.

00
97

.5
7 

± 
0.

10
99

.5
7 

± 
0.

09



DT-CWPT for Voice Pathology Analysis

855Pertanika J. Sci. & Technol. 28 (3): 839 - 858 (2020)

Database / Method Accuracy (%) 

Class 1 Class 2 Class 3 Average

MEEI Proposed DT-CWPT 94.35 97.01 90.90 94.09

IDP (Muhammad et al., 2017) 99.10 94.30 94.50 95.97

SVD Proposed DT-CWPT 100.00 96.80 99.56 98.80

IDP (Muhammad et al., 2017) 99.50 95.90 95.10 96.83

Note: that the proposed class definition is as defined in Table 1 

Table 8
Accuracy of the methods for multiclass analysis (file-based)

CONCLUSION

This work investigated feature extraction based on the DT-CWPT using energy and 
entropy measures tested with two classifiers, k-NN and SVM. The DT-CWPT performance 
as a feature extraction tool was proven to be reliable to detect the presence of diseases 
of the vocal fold. The proposed features yielded promising results and surpassed the 
conventional MFCC and LPC performance for file-based approach. A new set of features 
(real and imaginary coefficients) from the signal decomposition contribute to produce the 
best overall performance in detecting specific pathologies. The proposed system can be 
used to discriminate between two-class (normal and abnormal) and multiclass samples of 
voice pathologies. The experimental results using the proposed DT-CWPT features for 
the two-class analysis achieved 100% and 99.94% accuracy for MEEI and SVD database, 
respectively. Meanwhile, 99.48% for MEEI database and 99.65% for SVD database were 
achieved in multiclass. In future, it is hoped that more pathological samples can be obtained 
from these databases and also from other available databases so that more other specific 
pathology can be diagnosed and use worldwide. Feature optimisation can also be employed 
to further optimise the features obtained from DT-CWPT. It may include feature reduction 
and feature selection optimisation method.
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